-
以 ChatGPT 为例讲解 prompt 基本使用场景 &使用技巧 1:回答问题 -
以 ChatGPT 为例讲解 prompt 基本使用场景 & 使用技巧 2:基于示例回答 -
以 ChatGPT 为例讲解 prompt 基本使用场景 & 使用技巧 3:推理 -
以 ChatGPT 为例讲解 prompt 基本使用场景 & 使用技巧4:无中生有——写代码 -
以 ChatGPT 为例讲解 prompt 基本使用场景 & 使用技巧5:锦上添花——改写内容 -
以 ChatGPT 为例讲解 prompt 基本使用场景 & 使用技巧6:锦上添花——信息解释 -
以 ChatGPT 为例讲解 prompt 基本使用场景 & 使用技巧7:化繁为简——信息总结
场景介绍:
介绍完信息总结,再聊聊信息提取,我认为这个场景是继场景3推理以外,第二个值得深挖的场景。这个场景有非常多的有意思的场景,比如:
-
将一大段文字,甚至网页里的内容,按要求转为一个表格。按照这个思路你可以尝试做一个更智能的,更易懂的爬虫插件。 -
按照特定格式对文章内容进行信息归类。
Extract the important entities mentioned in the article below. First extract all company names, then extract all people names, then extract specific topics which fit the content and finally extract general overarching themes
Desired format:
Company names:
People names: -||-
Specific topics: -||-
General themes: -||-
Text: “””Powering Next Generation
Applications with OpenAI Codex
Codex is now powering 70 different applications across a variety of use cases through the OpenAI API.
May 24, 2022
4 minute read
OpenAI Codex, a natural language-to-code system based on GPT-3, helps turn simple English instructions into over a dozen popular coding languages. Codex was released last August through our API and is the principal building block of GitHub Copilot.
Warp is a Rust-based terminal, reimagined from the ground up to help both individuals and teams be more productive in the command-line.
Terminal commands are typically difficult to remember, find and construct. Users often have to leave the terminal and search the web for answers and even then the results might not give them the right command to execute. Warp uses Codex to allow users to run a natural language command to search directly from within the terminal and get a result they can immediately use.
“Codex allows Warp to make the terminal more accessible and powerful. Developers search for entire commands using natural language rather than trying to remember them or assemble them piecemeal. Codex-powered command search has become one of our game changing features.”
—Zach Lloyd, Founder, Warp
Machinet helps professional Java developers write quality code by using Codex to generate intelligent unit test templates.
Machinet was able to accelerate their development several-fold by switching from building their own machine learning systems to using Codex. The flexibility of Codex allows for the ability to easily add new features and capabilities saving their users time and helping them be more productive.
“Codex is an amazing tool in our arsenal. Not only does it allow us to generate more meaningful code, but it has also helped us find a new design of product architecture and got us out of a local maximum.”
—Vladislav Yanchenko, Founder, Machinet”””
Prompt 有点长,我解释下,它是让 AI 将文章里的重点内容进行抽离,并将其根据特定格式进行输出。要求将文章里提到的公司、人名、主题都按照 comma separated list(按逗号空格分开)的方式罗列出来。
最后的 output 是这样的:
Company names: OpenAI, Microsoft, GitHub, Pygma, Replit, Warp, Machinet
People names: Emile Paffard-Wray, Amjad Masad, Zach Lloyd, Vladislav Yanchenko
Specific topics: GPT-3, OpenAI API, Azure OpenAI Service, GitHub Copilot, Pygma, Replit, Warp, Machinet
General themes: Natural language-to-code, Productivity, Problem solving, Creativity, Learning
技巧6:通过示例来阐述需要输出的格式
上述的案例,就是用到了这个技巧。这个技巧是技巧2的变种,比较常用于生成文本场景。其实在场景7中,你也可以用到这个技巧。
假设你想让 AI 总结一篇非常非常长的文章,并且按照特定格式给你总结,那你可以在文章前面明确输出的格式(为了不占用太多显示空间,我省略了正文内容,你可以在 OpenAI 的 Playground 看到完整案例)。它的意思其实是让 ChatGPT 按 Topic 总结,每个 Topic 里按照无序列表(就是里面那个 -)将每个 Topic 的主要观点罗列出来。
Summarize the main points of the following speech
Use the following format:
Topic 1:
–
..
Topic 2:
–
..
Topic 10: ..
Text: “””
Thank you so much, Fred, for that lovely introduction. And thanks to the Atlantic Council for hosting me today.
The course of the global economy over the past two years has been shaped by COVID-19 and our efforts to fight the pandemic. It’s now evident, though, that the war between Russia and Ukraine has redrawn the contours of the world economic outlook. Vladimir Putin’s unprovoked attack on Ukraine and its people is taking a devastating human toll, with lives tragically lost, families internally displaced or becoming refugees, and communities and cities destroyed.
…
“””
Output 是这样的:
Topic 1: The war in Ukraine
– The war is taking a human toll with lives lost, families displaced, and communities destroyed
– The Biden administration is committed to holding Russia accountable
– The war has violated international law and is a challenge to the international order
Topic 2: The global economy
– The war is having negative impacts on the global economy, including higher commodity prices and inflation
– The IMF and World Bank will be focused on helping developing countries weather the impacts of the war
– The ultimate outcome for the global economy depends on the path of the war
关于这个场景和技巧,我想再解释一下为什么潜力很大。根据我使用各种 Summary 或者信息提取的产品,我发现,AI 并不知道什么是重点,所以在总结的过程中,会丢失很多内容。如何引导 AI 进行总结,就变得非常重要,且具有一定的可玩性。
来源:https://mp.weixin.qq.com/s/hDj-FNX4hL-4Ej0pjVmp5Q
本文地址:https://www.163264.com/968